Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.682
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38602633

RESUMO

Photocatalytic disinfection is a promising technology with low cost and high efficiency. However, most of the current studies on photocatalytic disinfection ignore the widespread presence of natural organic matter (NOM) in water bodies, so the incomplete conclusions obtained may not be applicable. Herein, this paper systematically studied the influence of humic acid (HA), one of the most important components of NOM, on the photocatalytic inactivation of bacteriophage f2 with electrospinning Cu-TiO2 nanofibers. We found that with the addition of HA, the light transmittance of the solution at 550 nm decreased from 94 to 60%, and the band gap of the photocatalyst was increased from 2.96 to 3.05 eV. Compared with reacting without HA, the degradation amount of RNA of f2 decreased by 88.7% after HA was added, and the RNA concentration increased from 1.95 to 4.38 ng·µL-1 after the reaction. Hence, we propose mechanisms of the effect of HA on photocatalytic disinfection: photo-shielding, passivation of photocatalysts, quenching of free radicals, and virus protection. Photo-shielding and photocatalyst passivation lead to the decrease of photocatalyst activity, and the reactive oxygen species (ROSs) (·OH, ·O2-, 1O2, H2O2) are further trapped by HA. The HA in water also can protect the shape of phage f2 and reduce the leakage of protein and the destruction of ribonucleic acid (RNA). This work provides an insight into the mechanisms for the influence of HA in photocatalytic disinfection process and a theoretical basis for its practical application.

4.
Front Pharmacol ; 15: 1380277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628645

RESUMO

Essential oils are potential alternatives to antibiotics for preventing Candida albicans (C. albicans) infection which is responsible for economic losses in the pigeon industry. Cymbopogon martini essential oil (EO) can inhibit pathogens, particularly fungal pathogens but its potential beneficial effects on C. albicans-infected pigeons remain unclear. Therefore, we investigated the impact of C. martini EO on antioxidant activity, immune response, intestinal barrier function, and intestinal microbiota in C. albicans-infected pigeons. The pigeons were divided into four groups as follows: (1) NC group: C. albicans uninfected/C. martini EO untreated group; (2) PC group: C. albicans infected/C. martini EO untreated group; (3) LPA group: C. albicans infected/1% C. martini EO treated group; and (4) HPA group: C. albicans infected/2% C. martini EO treated group. The pigeons were infected with C. albicans from day of age 35 to 41 and treated with C. martini EO from day of age 42 to 44, with samples collected on day of age 45 for analysis. The results demonstrated that C. martini EO prevented the reduction in the antioxidant enzymes SOD and GSH-Px causes by C. albicans challenge in pigeons. Furthermore, C. martini EO could decrease the relative expression of IL-1ß, TGF-ß, and IL-8 in the ileum, as well as IL-1ß and IL-8 in the crop, while increasing the relative expression of Claudin-1 in the ileum and the crop and Occludin in the ileum in infected pigeons. Although the gut microbiota composition was not significantly affected by C. martini EO, 2% C. martini EO increased the abundance of Alistipes and Pedobacter. In conclusion, the application of 2% C. martini EO not only enhanced the level of antioxidant activity and the expression of genes related to intestinal barrier function but also inhibited inflammatory genes in C. albicans-infected pigeons and increased the abundance of gut bacteria that are resistant to C. albicans.

5.
Chem Commun (Camb) ; 60(35): 4656-4658, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38587483

RESUMO

Ketones exist widely in naturally occurring products and are indispensable building blocks in organic synthesis. Carbonylation represents one of the most straightforward methods for ketone preparation and has become an attractive field in modern organic chemistry as well. Among the strategies, photocatalytic carbonylation is also worthy of further exploration. Herein, we developed a three-component carbonylation that provides a new method for the synthesis of ketones from Hantzsch esters, CO and styrenes. The reaction was performed under a blue light environment and yields a series of ketones with moderate to good yields.

7.
J Am Chem Soc ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607333

RESUMO

Unraveling the mechanism of chirality transfer across length scales is crucial to the rational development of functional materials with hierarchical chirality. The key obstacle is the lack of structural information, especially at the mesoscopic level. We report herein the structural identification of helical covalent organic frameworks (heliCOFs) with hierarchical chirality, which integrate molecular chirality, channel chirality, and morphology chirality into one crystalline entity. Specifically, benefiting from the highly ordered structure of heliCOFs, the existence of chiral channels at the mesoscopic level has been confirmed by electron crystallography, and the handedness of these chiral channels has been directly determined through the stereopair imaging technique. Accordingly, the chirality transfer in heliCOFs from microscopic to macroscopic levels could be rationalized with a layer-rotating model that has been supported by both crystal structure analysis and theoretical calculations. Observation of chiral channels in heliCOFs not only provides unprecedented data for the understanding of the chirality transfer process but also sheds new light on the rational construction of highly ordered polymeric materials with hierarchical chirality.

8.
J Phys Chem B ; 128(15): 3732-3741, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38568211

RESUMO

Using nanobubbles as geometrical confinements, we create a thin water film (∼10 nm) in a graphene liquid cell and investigate the evolution of its instability at the nanoscale under transmission electron microscopy. The breakdown of the water films, resulting in the subsequent formation and growth of nanodroplets, is visualized and generalized into different modes. We identified distinct droplet formation and growth modes by analyzing the dynamic processes involving 61 droplets and 110 liquid bridges within 31 Graphene Liquid Cells (GLCs). Droplet formation is influenced by their positions in GLCs, taking on a semicircular shape at the edge and a circular shape in the middle. Growth modes include liquid mass transfer driven by Plateau-Rayleigh instability and merging processes in and out-of-plane of the graphene interface. Droplet growth can lead to the formation of liquid bridges for which we obtain multiview projections. Data analysis reveals the general dynamics of liquid bridges, including drawing liquids from neighboring residual water films, merging with surrounding droplets, and merging with other liquid bridges. Our experimental observations provide insights into fluid transport at the nanoscale.

9.
J Med Microbiol ; 73(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629677

RESUMO

With the development of social economy, the incidence of gout is increasing, which is closely related to people's increasingly rich diet. Eating a diet high in purine, fat, sugar and low-fibre for a long time further aggravates gout by affecting uric acid metabolism. The renal metabolism mechanism of uric acid has been thoroughly studied. To find a new treatment method for gout, increasing studies have recently been conducted on the mechanism of intestinal excretion, metabolism and absorption of uric acid. The most important research is the relationship between intestinal microbiota and the risk of gout. Gut microbiota represent bacteria that reside in a host's gastrointestinal tract. The composition of the gut microbiota is associated with protection against pathogen colonization and disease occurrence. This review focuses on how gut microbiota affects gout through uric acid and discusses the types of bacteria that may be involved in the occurrence and progression of gout. We also describe potential therapy for gout by restoring gut microbiota homeostasis and reducing uric acid levels. We hold the perspective that changing intestinal microbiota may become a vital method for effectively preventing or treating gout.


Assuntos
Microbioma Gastrointestinal , Gota , Humanos , Ácido Úrico/metabolismo , Gota/metabolismo , Trato Gastrointestinal/metabolismo , Bactérias/metabolismo
10.
Stem Cells Int ; 2024: 5388064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633381

RESUMO

Objectives: Traditional Chinese medicine Cortex Eucommiae has been used to treat bone fracture for hundreds of years, which exerts a significant improvement in fracture healing. Aucubin, a derivative isolated from Cortex Eucommiae, has been demonstrated to possess anti-inflammatory, immunoregulatory, and antioxidative potential. In the present study, our aim was to explore its function in bone regeneration and elucidate the underlying mechanism. Materials and Methods: The effects of Aucubin on osteoblast and osteoclast were examined in mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) and RAW 264.7 cells, respectively. Moreover, the lncRNA H19 and Wnt/ß-catenin signaling were detected by qPCR examination, western blotting, and luciferase activity assays. Using the femur fracture mice model, the in vivo effect of Aucubin on bone formation was monitored by X-ray, micro-CT, histomorphometry, and immunohistochemistry staining. Results: In the present study, Aucubin was found to significantly promote osteogenic differentiation in vitro and stimulated bone formation in vivo. Regarding to the underlying mechanism, H19 was found to be obviously upregulated by Aucubin in MSCs and thus induced the activation of Wnt/ß-catenin signaling. Moreover, H19 knockdown partially reversed the Aucubin-induced osteogenic differentiation and successfully suppressed the activation of Wnt/ß-catenin signaling. We therefore suggested that Aucubin induced the activation of Wnt/ß-catenin signaling through promoting H19 expression. Conclusion: Our results demonstrated that Aucubin promoted osteogenesis in vitro and facilitated fracture healing in vivo through the H19-Wnt/ß-catenin regulatory axis.

11.
Front Endocrinol (Lausanne) ; 15: 1386773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660514

RESUMO

Background: Our previous multicenter case-control study showed that aging, up-regulation of platelet glycogen synthase kinase-3ß (GSK-3ß), impaired olfactory function, and ApoE ϵ4 genotype were associated with cognitive decline in type 2 diabetes mellitus (T2DM) patients. However, the causal relationship between these biomarkers and the development of cognitive decline in T2DM patients remains unclear. Methods: To further investigate this potential relationship, we designed a 6-year follow-up study in 273 T2DM patients with normal cognitive in our previous study. Baseline characteristics of the study population were compared between T2DM patients with and without incident mild cognitive impairment (MCI). We utilized Cox proportional hazard regression models to assess the risk of cognitive impairment associated with various baseline biomarkers. Receiver operating characteristic curves (ROC) were performed to evaluate the diagnostic accuracy of these biomarkers in predicting cognitive impairment. Results: During a median follow-up time of 6 years (with a range of 4 to 9 years), 40 patients (16.13%) with T2DM developed MCI. Participants who developed incident MCI were more likely to be older, have a lower education level, have more diabetic complications, a higher percentage of ApoE ϵ4 allele and a higher level of platelet GSK-3ß activity (rGSK-3ß) at baseline (P<0.05). In the longitudinal follow-up, individuals with higher levels of rGSK-3ß were more likely to develop incident MCI, with an adjusted hazard ratio (HR) of 1.60 (95% confidence interval [CI] 1.05, 2.46), even after controlling for potential confounders. The AUC of the combination of age, rGSK-3ß and ApoEϵ4 allele predicted for incident MCI was 0.71. Conclusion: Platelet GSK-3ß activity could be a useful biomarker to predict cognitive decline, suggesting the feasibility of identifying vulnerable population and implementing early prevention for dementia.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Glicogênio Sintase Quinase 3 beta , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Masculino , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/sangue , Seguimentos , Pessoa de Meia-Idade , Idoso , Biomarcadores/sangue , Apolipoproteína E4/genética , Estudos de Casos e Controles
12.
Ying Yong Sheng Tai Xue Bao ; 35(3): 678-686, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646755

RESUMO

Exploring the effects of ant nests on soil CH4 emissions in the secondary tropical forests is of great scientific significance to understand the contribution of soil faunal activities to greenhouse gas emissions. With static chamber-gas chromatography method, we measured the dry-wet seasonal dynamics of CH4 emissions from ant nests and control soils in the secondary forest of Syzygium oblatum communities in Xishuangbanna. We also examined the linkages of ant-mediated changes in functional microbial diversity and soil physicochemical properties with CH4 emissions. The results showed that: 1) Ant nests significantly accelerated soil CH4 emissions, with average CH4 emissions in the ant nests being 2.6-fold of that in the control soils. 2) The CH4 emissions had significant dry-wet seasonal variations, which was a carbon sink in the dry seasons (from -0.29±0.03 to -0.53±0.02 µg·m-2·h-1) and a carbon source in the wet seasons (from 0.098±0.02 to 0.041±0.009 µg·m-2·h-1). The CH4 emissions were significantly higher in ant nests than in control soils. The CH4 emissions from the ant nests had smaller dry-wet seasonal variation (from -0.38±0.01 to 0.12±0.02 µg·m-2·h-1) than those in the control soils (from -0.65±0.04 to 0.058±0.006 µg·m-2·h-1). 3) Ant nests significantly increased the values (6.2%-37.8%) of soil methanogen diversity (i.e., Ace and Shannon indices), temperature and humidity, carbon pools (i.e., total, easily oxidizable, and microbial carbon), and nitrogen pools (i.e., total, hydrolyzed, ammonium, and microbial biomass nitrogen), but decreased the diversity (i.e., Ace and Chao1 indices) of methane-oxidizing bacteria by 21.9%-23.8%. 4) Results of the structural equation modeling showed that CH4 emissions were promoted by soil methanogen diversity, temperature and humidity, and C and N pools, but inhibited by soil methane-oxidizing bacterial diversity. The explained extents of soil temperature, humidity, carbon pool, nitrogen pool, methanogen diversity, and methane-oxidizing bacterial diversity for the CH4 emission changes were 6.9%, 21.6%, 18.4%, 15.2%, 14.0%, and 10.8%, respectively. Therefore, ant nests regulated soil CH4 emission dynamics through altering soil functional bacterial diversities, micro-habitat, and carbon and nitrogen pools in the secondary tropical forests.


Assuntos
Formigas , Florestas , Metano , Solo , Clima Tropical , Metano/análise , Metano/metabolismo , Animais , Solo/química , China , Microbiologia do Solo , Estações do Ano
13.
Int J Surg ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38626431

RESUMO

BACKGROUND: The prognostic value of carbohydrate antigen 19-9 (CA19-9) is known to be affected by elevated bilirubin levels in patients with gallbladder carcinoma (GBC). The clinical significance of changes in the ratio of CA19-9 levels to total bilirubin (TB) levels in patients with GBC after curative-intent resection remains unknown. The aim of this study was to determine the prognostic value of changes in preoperative and postoperative CA19-9/TB ratio in these patients. METHODS: Prospectively colleced data on consecutive patients who underwent curative-intent resection for GBC between January 2015 and December 2020 stored in a multicenter database from 10 hospitals were analysed in this retrospective cohort study. Based on the adjusted CA19-9 defined as the ratio of CA19-9 to TB, and using 2×103 U/µmol as the upper normal value, patients were divided into a normal group (with normal preoperative and postoperative adjusted CA19-9), a normalization group (with abnormal preoperative but normal postoperative adjusted CA19-9), and a non-normalization group (with abnormal postoperative adjusted CA19-9). The primary outcomes were overall survival (OS) and recurrence-free survival (RFS). The log-rank test was used to compare OS and RFS among the groups. The Cox regression model was used to determine factors independently associated with OS and RFS. RESULTS: The normal group (n=179 patients) and the normalization group (n=73 patients) had better OS and RFS than the non-normalization group (n=65 patients) (the 3-year OS rates 72.0%, 58.4% and 24.2%, respectively; the RFS rates 54.5%, 25.5% and 11.8%, respectively; both P<0.001). There were no significant differences between the normal and the normalization groups in OS and RFS (OS, P=0.255; RFS, P=0.130). Cox regression analysis confirmed that the non-normalization group was independently associated with worse OS and RFS. Subgroup analysis revealed that the non-normalization group of patients who received adjuvant therapy had significantly improved OS and RFS as compared to those who did not receive adjuvant therapy (OS, P=0.025; RFS, P=0.003). CONCLUSIONS: Patients with GBC who underwent curative-intent surgical resection with postoperative abnormal levels of adjusted CA19-9 (the CA19-9/TB ratio) were associated with poorer long-term survival outcomes. Adjuvant therapy after surgery improved the long-term outcomes of these patients.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38580555

RESUMO

Precise recognition of the intraparotid facial nerve (IFN) is crucial during parotid tumor resection. We aimed to explore the application effect of direct visualization of the IFN in parotid tumor resection. Fifteen patients with parotid tumors were enrolled in this study and underwent specific radiological scanning in which the IFNs were displayed as high-intensity images. After image segmentation, IFN could be preoperatively directly visualized. Mixed reality combined with surgical navigation were applied to intraoperatively directly visualize the segmentation results as real-time three-dimensional holograms, guiding the surgeons in IFN dissection and tumor resection. Radiological visibility of the IFN, accuracy of image segmentation and postoperative facial nerve function were analyzed. The trunks of IFN were directly visible in radiological images for all patients. Of 37 landmark points on the IFN, 36 were accurately segmented. Four patients were classified as House-Brackmann Grade I postoperatively. Two patients with malignancies had postoperative long-standing facial paralysis. Direct visualization of IFN was a feasible novel method with high accuracy that could assist in recognition of IFN and therefore potentially improve the treatment outcome of parotid tumor resection.

15.
Light Sci Appl ; 13(1): 74, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485915

RESUMO

Photonic quantum computation plays an important role and offers unique advantages. Two decades after the milestone work of Knill-Laflamme-Milburn, various architectures of photonic processors have been proposed, and quantum advantage over classical computers has also been demonstrated. It is now the opportune time to apply this technology to real-world applications. However, at current technology level, this aim is restricted by either programmability in bulk optics or loss in integrated optics for the existing architectures of processors, for which the resource cost is also a problem. Here we present a von-Neumann-like architecture based on temporal-mode encoding and looped structure on table, which is capable of multimode-universal programmability, resource-efficiency, phase-stability and software-scalability. In order to illustrate these merits, we execute two different programs with varying resource requirements on the same processor, to investigate quantum signature of chaos from two aspects: the signature behaviors exhibited in phase space (13 modes), and the Fermi golden rule which has not been experimentally studied in quantitative way before (26 modes). The maximal program contains an optical interferometer network with 1694 freely-adjustable phases. Considering current state-of-the-art, our architecture stands as the most promising candidate for real-world applications.

16.
Chin J Dent Res ; 27(1): 39-46, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546518

RESUMO

Coordination and information exchange among the various organelles ensure the precise and orderly functioning of eukaryotic cells. Interaction between the cytoplasm and nucleoplasm is crucial for many physiological processes. Macromolecular protein transport into the nucleus requires assistance from the nuclear transport system. These proteins typically contain a nuclear localisation sequence that guides them to enter the nucleus. Understanding the mechanism of nuclear import of macromolecular proteins is important for comprehending cellular processes. Investigation of disease-related alterations can facilitate the development of novel therapeutic strategies and provide additional evidence for clinical trials. This review provides an overview of the proteins involved in nuclear transport and the mechanisms underlying macromolecular protein transport.


Assuntos
Núcleo Celular , Células Eucarióticas , Transporte Ativo do Núcleo Celular , Transporte Proteico , Citoplasma
17.
Biochem Pharmacol ; 223: 116113, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460907

RESUMO

Glioma is one of the most common primary malignant tumors of the central nervous system. Temozolomide (TMZ) is the only effective chemotherapeutic agent, but it easily develops resistance and has unsatisfactory efficacy. Consequently, there is an urgent need to develop safe and effective compounds for glioma treatment. The cytotoxicity of 30 candidate compounds to glioma cells was detected by the CCK-8 assay. Daurisoline (DAS) was selected for further investigation due to its potent anti-glioma effects. Our study revealed that DAS induced glioma cell apoptosis through increasing caspase-3/6/9 activity. DAS significantly inhibited the proliferation of glioma cells by inducing G1-phase cell cycle arrest. Meanwhile, DAS remarkably suppressed the migration and invasion of glioma cells by regulating epithelial-mesenchymal transition. Mechanistically, our results revealed that DAS impaired the autophagic flux of glioma cells at a late stage by mediating the PI3K/AKT/mTOR pathway. DAS could inhibit TMZ-induced autophagy and then significantly promote TMZ chemosensitivity. Nude mice xenograft model revealed that DAS could restrain glioma proliferation and promote TMZ chemosensitivity. Thus, DAS is a potential anti-glioma drug that can improve glioma sensitivity to TMZ and provide a new therapeutic strategy for glioma in chemoresistance.


Assuntos
Benzilisoquinolinas , Neoplasias Encefálicas , Glioma , Camundongos , Animais , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Neoplasias Encefálicas/metabolismo , Glioma/patologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Linhagem Celular Tumoral , Apoptose , Resistencia a Medicamentos Antineoplásicos
18.
Nat Chem ; 16(4): 521-532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504025

RESUMO

Chiral α-tertiary amines and related azacycles are sought-after compounds for drug development. Despite progress in the catalytic asymmetric construction of aza-quaternary stereocentres, enantioselective synthesis of multifunctional α-tertiary amines remains underdeveloped. Enantioenriched α-disubstituted α-ethynylamines are attractive synthons for constructing chiral α-tertiary amines and azacycles, but methods for their catalytic enantioselective synthesis need to be expanded. Here we describe an enantioselective asymmetric Cu(I)-catalysed propargylic amination (ACPA) of simple ketone-derived propargylic carbonates to give both α-dialkylated and α-alkyl-α-aryl α-tertiary ethynylamines. Sterically confined pyridinebisoxazoline (PYBOX) ligands, with a C4 shielding group and relaying groups, play a key role in achieving excellent enantioselectivity. The syntheses of quaternary 2,5-dihydropyrroles, dihydroquinines, dihydrobenzoquinolines and dihydroquinolino[1,2-α]quinolines are reported, and the synthetic value is further demonstrated by the enantioselective catalytic total synthesis of a selective multi-target ß-secretase inhibitor. Enantioselective Cu-catalysed propargylic substitutions with O- and C-centred nucleophiles are also realized, further demonstrating the potential of the PYBOX ligand.

19.
ACS Appl Mater Interfaces ; 16(13): 16573-16579, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511295

RESUMO

The intrinsic stability of the acceptor is a crucial component of the photovoltaic device stability. In this study, we investigated the efficiency and stability of the nonfused-ring acceptors LC8 and BC8 under indoor light conditions. Interestingly, we found that devices based on BC8 with terminal side chains exhibited a higher indoor efficiency and stability. Through accelerated aging experiments, we discovered that the acceptors generate singlet oxygen under light exposure with BC8 demonstrating lower levels of ROS compared to LC8. We attribute this difference to the modulation of the acceptor aggregation orientation. Furthermore, the generated reactive oxygen species (ROS) further deteriorate the acceptor structure, and this phenomenon is also observed in high-efficiency acceptor structures, such as Y6. Our research reveals important mechanisms of acceptor photo-oxidation processes, providing a theoretical basis for enhancing the intrinsic stability of acceptors.

20.
J Cell Mol Med ; 28(7): e18221, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509759

RESUMO

Gliomas are the most common tumours in the central nervous system. In the present study, we aimed to find a promising anti-glioma compound and investigate the underlying molecular mechanism. Glioma cells were subjected to the 50 candidate compounds at a final concentration of 10 µM for 72 h, and CCK-8 was used to evaluate their cytotoxicity. NPS-2143, an antagonist of calcium-sensing receptor (CASR), was selected for further study due to its potent cytotoxicity to glioma cells. Our results showed that NPS-2143 could inhibit the proliferation of glioma cells and induce G1 phase cell cycle arrest. Meanwhile, NPS-2143 could induce glioma cell apoptosis by increasing the caspase-3/6/9 activity. NPS-2143 impaired the immigration and invasion ability of glioma cells by regulating the epithelial-mesenchymal transition process. Mechanically, NPS-2143 could inhibit autophagy by mediating the AKT-mTOR pathway. Bioinformatic analysis showed that the prognosis of glioma patients with low expression of CASR mRNA was better than those with high expression of CASR mRNA. Gene set enrichment analysis showed that CASR was associated with cell adhesion molecules and lysosomes in glioma. The nude mice xenograft model showed NPS-2143 could suppress glioma growth in vivo. In conclusion, NPS-2143 can suppress the glioma progression by inhibiting autophagy.


Assuntos
Glioma , Naftalenos , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Serina-Treonina Quinases TOR/metabolismo , Naftalenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...